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SUMMARY
This document discusses formulations and algorithms implemented in the

MHOST finite element program developed under NASA Lewis Research

Center Contract NAS3-23697. The code utilizes a novel concept of the mixed

iterative solution technique for the efficient three dimensional computations

of turbine engine hot section components. We first survey the state-of-the-art

finite element technology at the time when the project was started (1983) and

the major contributions made by this effort in the advancement of the

methodology since then. Also the formulations and methodologies developed

under this project are summarized in the first introductory chapter. The second

chapter is devoted to the general framework of variational formulations and

solution algorithms derived from the mixed three-field Hu-Washizu

principle. This formulation enables us to use nodal interpolation for

coordinates, displacements, strains and stresses. Algorithmic description of the

mixed iterative method includes variations for the quasi static, transient

dynamic and buckling analyses. The global-local analysis procedure referred to

as the subelement refinement is developed in the framework of the mixed

iterative solution, of which the detail is presented also in the second chapter.

The third chapter discusses the numerically integrated isoparametric

elements implemented in this framework. Methods to filter certain

components of strain and project the element discontinuous quantities to the

nodes are developed for a family of linear elements. In the fourth section, we

describe integration algorithms for linear and nonlinear finite element

equations included in the MHOST program. An appendix is added to outline

the utilities handling the algebraic systems of linear equations such as the

profile solver and subspace iterations for eigenvalue extraction.
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MHOST Theoretical Manual 1

1. INTRODUCTION

Introductory Remarks

The main objective of the MHOST finite element program development is to construct

an efficient analysis package for three dimensional models of gas turbine engine hot

section components incorporating various constitutive models describing the material

response under extreme thermal and mechanical loading conditions. Another

requirement was to represent quantities involved in the analysis at nodes. These are

geometry (coordinates), deformation (displacement and deformation gradient), strain,

stress and material parameters.

To fulfill the requirement, a new finite element formulation and solution

algorithm is developed based on the mixed variational formulations. This concept

enables us to introduce independent interpolation functions for all the physical

quantities involved in the analysis, and to develop nodal interpolation algorithms. It

was found from the literature survey that there had not been any formulation from

which the efficient numerical procedure could be derived satisfying all the requirement

stated in the first paragraph.

The most significant accomplishment in this finite element method develop-

ment is that the augmented Hu-Washizu principle was constructed from which both

element formulations and solution algorithms are derived. In the formulation and

computer program developments for the MHOST system, other major ingredients are:

(i) The library of simple and efficient isoparametric elements;

(ii) A set of nonlinear constitutive equations for modelling high temperature in-

elastic responses of hot section components;

(iii) Efficient solution algorithms for quasi-static, dynamic and eigenvaIue analysis;

(iv) Friendly user interface in defining the finite element models and loading con-

ditions; also for graphic post-processing and other applications such as the per-

turbation analysis for probabiIish'c structural analysis,

The outline of this computational procedure differs radically from the con-

ventional displacement method when applied to the linear elasticity. For nonlinear

applications, the method works almost identical manner as the standard numerical

S.Nakazawa March, 1991



MHOSTTheoreticalManual 2

process, indeed, one of the important findings in this project from the theoretical

/numerical point of view is that the mixed iterative solution concept provides us with

an rational framework to derive and analyze the solution strategies for nonlinear finite

elements.

V

User Input

Material model

, Structural Model

L Initial Solution

DISPLACEMENT PRECONDITIONING

Numerical Filtering

NODAL STRAIN PROJECTION

Accurate Strain Field

NODAL STRESS RECOVERY

Mixed Residual Vector

EQUILIBRIUM ITERATIONS

Improvement of Solution Quality

v

Figure 1.1 The 1Vfixed Iterative Process. A Schematic Flow Chart.

Figure 1.1 illustrates the fundamental concept of mixed iterative solution

strategy constructed directly from this mixed variational principle. The structural
model is fed into the numerical computation in a usual way by constructing the

displacement stiffness equations as the first step. Then the nodal strain is calculated by

a mean square projection process, which eliminates the numerical instability in

strain/stress approximations such as spurious oscillations. The inelastic material

models are incorporated in the nodal stress integration in a modular fashion. The

resulting nodally interpolated stress field is more accurate in comparison with the

conventional displacement method. This improvement is brought back into the

displacement finite element equations through the equilibrium iteration loop.

S.Nakazawa March, 1991
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M_./

Additional computation required for the mixed iterative solution of linear

problems is insignificant involving only a few re-solutions for the same stiffness
matrix with modified residual vector. The nodal strain projection is carried out

utilizing the diagonalized projection operator not requiring extra matrix

manipulations. No additional computation is needed when the method is used for

nonlinear computations. The modern iterative solution technology based on the quasi-

Newton update is incorporated to further improve the performance of this solution
method.

The system of finite element equations solved in the MHOST program is

symbolically shown in Figure 1.2 with the equivalent mixed stiffness equations derived

by the direct elimination. The construction and inversion of this mixed finite element

equation is prohibitively expensive in terms of both the computing time and the

memory requirement. Hence the iterative solution algorithms become attractive

alternatives to overcome this difficulty and take advantages of the mixed finite element

formulations.

Three Field Finite Element System

Lo oB t -C t

Reduced Displacement Finite Element Equations

(Bt C-1D CtB)U = F-

Figure 1.2 The M/xed Finite Element Equations.

The linear convergence of the basic mixed iterative method is illustrated in

Figure 1.3a. The difference of displacement and mixed stiffness matrices generates the

driving residual vector for the iteration even for linear elastic problems. The quasi-

Newton type update algorithms, with an example being illustrated in Figure 1.3b,

improve the convergence rate of the iterative solution significantly.

In the MHOST program, other than the constant metric iteration scheme

(somewhat similar to the modified Newton iteration) a family of modern iterative

solution algorithms are implemented in order to improve the efficiency including; the

optional line search, the conjugate gradient, the secant implementation of Davidon

rank-one quasi-Newton, BFGS rank-two quasi-Newton update algorithms. We observe

that the displacement stiffness gives steeper gradient in the load-deflection relation
than the exact one, whereas the mixed stiffness lies in the flexible side. Therefore the

S.Nakazawa March, 1991
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iterative solution algorithm starting from the displacement method gradually

recovering the mixed solution is almost always stable and convergent.

V

To zoom-in to the local stress concentrations due to the embedded singularities

such as holes and cracks, a scheme for global-local analysis referred to as the sub-

element scheme is developed in the MHOST program. Elements requiring more

detailed information in the global finite element computations are subdivided into a

finer predefined mesh pattern, and the separate finite element computations are

performed in these sub-element regions. The result is brought back to the global

analysis by virtue of mixed iterative solution concept through the residual force vector

generated by the sub-element stress field.

Stiffness of the Displacement Precondltioner

i//i M'x s'o vI///up oved

Constant Metric Iteration Variable Metric Iteration

a) b)

Figure 1.3 Behavior of the lVfixed Iterative Solution. A Linear Problem.

The numerically integrated isoparametric elements are used in this work. To be

able to increase the computing speed, only the linear basis functions are used for the

global finite element computations. The element library consists of: two node beam

element (type 98), four node plane stress element (type 3); plane strain element (type

11); axisymmetric solid element (type 10); three dimensional solid element (type 7);

and, shell element (type 75). To be able to improve the accuracy, the selectively reduced

integration scheme is incorporated with necessary refinements. Those are a rational

coordinate transformation and strain fi'itering mechanism based on the polar decom-

position of the isoparametric transformation and a projection method (often referred
to as the variational recovery method) from the element discontinuous strain appro-

ximation to the nodal interpolation. A set of elements with high coarse mesh accuracy

derived from the assumed stress concept (often referred to as the assumed stress hybrid=

S.Nakazawa March, 1991
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elements) is derived and included in the element library. Those are: plane stress (type

151), plane strain (type 152), axisymmetric solid (type 153), and three-dimensional solid

(type 154).

The material models included in the MHOST program are:

(i) The linear elasticity with optional temperature dependency and anisotropy;

The simplified plasticity (the secant elastic modulus is calculated in the stress

recovery which is then used to generate the secant stiffness matrix representing

the plastic response under the monotonic loading situations);

The von Mises plasticity with the temperature dependent yield stress and the

anisotropic yield surface definitions being the optional features. The radial

return algorithm is used for the integration of the elastic-plastic material

response over the given strain history. The general background of this type of

algorithms is documented by HUGHES (1984). The finite deformation version

of this algorithm implemented in this code is documented in NAGTEGAAL

(1985). The effects of creep are taken into account in an explicit time integration

algorithm constructed inside of the quasi-static solution subsystem.

(iv) The unified viscopIastic constitutive equation originally developed by

WALKER (1982) and implemented in a general purpose finite element package

by CASSENTI (I983) is implemented in MHOST as a part of the material library.

A straightforward explicit time integration with the substepping is used as the

driving mechanism for the stress recovery. The temperature dependent

isotropic elastic modulus is used as the preconditioner of the iterative solution

incorporating this material model.

The mechanism to incorporate other material models are provided in this computer

program. As shown in Figure 1.1, the material definition is treated as another interface
of the mixed iterative finite element method to the real world. The concept of user

subroutines makes a wide range of different constitutive models easily implemented.

Historical Background

The research directions in the improvement of performance and applicability of the

finite element method have continued to be:

(i) Mixed and hybrid formulations to improve the accuracy of the finite elements;

(ii) Global solution procedures for linear and nonlinear finite element equations to

reduce both the memory requirement and number of arithmetic operations

with particular emphasis on the iterative solution strategies; and,

S.Nakazawa March, 1991



MHOST Theoretical Manual 6

(iii) Post-processing methods not only to accurately estimate errors a posteriori

leading to adaptive mesh refinement strategies but also to extract more

information out of a finite element solution.

Equipped with the modern numerical technology and the advanced computing

machinery, the application of finite elements expands its limit. The use of large

meshes representing fine detail of the engineering problems has become useful.

Sophisticated numerical methods have been developed to deal with combined
nonlinear kinematics and material responses in a highly efficient manner.

Reports, books and journal articles related to the non- standard finite element

methods are surveyed with the main objective being the search of useful numerical

technology in the framework of mixed iterative solution algorithms. In the past, the
non-standard finite element methods such as the mixed and hybrid method have not

been exploited in a systematic manner. Few exceptions are the hybrid elements for

plates and shell analysis which eventually generates the element stiffness equations
and the mixed elements for incompressible problems based on the Lagrangian

functional used by HERRMANN (1965).

As documented in TODD, CASSENTI, NAKAZAWA, BANERIEE (1984) and the

research papers by NAKAZAWA (1984A,B), ZIENKIEWICZ, VILOTTE, NAKAZAWA,

TOYOSHIMA (1984), ZIENKIEWICZ, LI, NAKAZAWA (1985), the iterative algorithms

to develop continuous stress field such as developed by CANTIN, LOUBIGNAC,

TOUZOT (1978) can be identified as the mixed finite element method. It is important to

note that, in constructing the iterative methods, the use of Hu-Washizu variational

principle is crucial to set up the practically useful algorithms, although a contrary
remark is made in the classical textbook by ZIENKIEWICZ (1977) (page 310). In the

recent paper by SIMO, TAYLOR, PISTER (1984), the same observation is made and a
finite element method is constructed from the Hu-Washizu principle with application

to the finite deformation plasticity.

Except for a few primitive papers such as mentioned above and the literature

which appeared after the present development effort was initiated, no directly relevant

work has been published on construction and iterative solution for the mixed finite

element equation derived from the Hu-Washizu form. There are, however, a number

of papers indirectly relevant to and somehow useful for the further development of

solution strategy employed in the MHOST code.

The algorithm is viewed as composed of three steps. The Iinearized

momentum equation is solved in terms of displacement vector for the pre-

conditioning purposes. Then, the post- processing algorithm is entered to gene-

rate the strain field based on the mixed interpolation which is the used for the

integration of the constitutive equation. The third step is the equilibrium

iteration to satisfy the nonlinear virtual work equation with respect to the stress

V
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field interpolated in a mixed manner.

The quality of displacement field generated by the preconditioning contributes

significantly to the overall quality of the solution as well as the convergence chara-

cteristics. The use of equivalent stiffness to the element discontinuous strain mixed

forms is a possible numerical strategy for these purposes [MALKUS, HUGHES (1978),

HUGHES, MAI.KUS (1983)]. In particular, application to plates and shells in recent

developments for the lower order element technology indicate possible improvements

for the preconditioning operations [HUGHES, TEZDUYAR (1981)] with further effi-

ciency gained by using the lower order quadrature [BELYTS(UqKO, TSAY (1983)].

The strain recovery algorithm based on the mixed interpolation is found to be

virtually identical to the classical methodology based on the consistent conjugate stress

distribution studied by ODEN, BRAUCHLI (1971), ODEN, REDDY (1973). In the recent

papers, BABUSKA, MILLER (1984) present a systematic method to construct and

analyze the post-processing algorithms. It is claimed that there are postprocessing

procedures for various quantities which have the same order of convergence rate as the

energy error in the displacement finite element approximation. This statement agrees

quite well with the experimental observation by OWA (1982), NAKAZAWA, OWA,

ZIENKIEWICZ (1985). Also, the super convergent results in terms of stress and strain

as well as the displacement observed in the first year exercise of this project may be due

to the higher order convergence rate of the post-processing algorithm used for the

strain recovery computation. No literature is available on the effect of numerical

quadrature in the postprocessing algorithms except a recent technical note by SIMO,
HUGHES (1985) on the assumed strain, so called B-bar type algorithms for continuum

elements and plates and shells.

The integration algorithms of the nonlinear constitutive equations, in particular

rate independent plasticity, are well- established as indicated in the Task I literature

survey [FAHYRE, HUGHES (1983)] and one of the most reliable algorithm based on the

radial return concept [NAGTEGAAL, DE JONG (1981)] is implemented. No systematic

effort has yet been reported of the algorithm development for the advanced viscoplastic

constitutive models including the temperature effect. Further literature search and

original investigation is required in this field.

Methods of equilibrium iteration have been investigated in recent years and a

number of useful papers and reports have appeared, some of which are mentioned in

the previous literature survey report. A survey and series of experiment reported by
ABDEL RAHMAN (1982) is found a useful collection of algorithms and numerical

results with application to the nonlinear plates. Basic algorithms of Newton-Raphson

and modified- and quasi-Newton methods are compared in the displacement method
framework. As demonstrated later in this report, algorithms discussed in a classical

report by MATTHIES, STRANG (1979) are found usable even in the content of the
mixed iterative method.

The algorithms and convergence arguments directly applicable to the present

S.Nakazawa March, 1991
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framework are only available from the literature on the augmented Lagrangian

methods for the quadratic minimization problem with linear equality constraints such

as incompressibility and the Dirichlet boundary condition. Possible improvement of

the iterative procedure is indicated in FORTIN, GLOWINSKI (1982) and the numerical

test examples studied by NAKAZAWA, VILOTTE, ZIENKIEWICZ (1984),

ZIENKIEWICZ, VILOTTE, NAKAZAWA, TOYOSHIMA (1984) shows the significant

improvement obtained by using such algorithms for the analysis of Stokes' flow. The

mathematical discussions and algorithms are also found in GIRAULT, RAVIART

(1979), TEMAM (1977). The original idea of the mixed iterative solution is, indeed,

found in a historical work by ARROW, HURWICZ, UZAWA (1968) and the class of

iterative algorithms for the mixed problems is referred to as the Uzawa method.

In the context of linear elastic finite element analysis, the use of mixed

approximations and equilibrium iteration has appeared in an ad hoc fashion repeatedly

in the history other than the work by CANTIN, et al. (1979). For nonconforming plate

bending elements, CRISFIELD (1975) has proposed an iterative algorithm to improve

the property of the numerical process. In the paper, the similarity of the concept based

on a modified Hellinger-Reissner principle to the initial strain method iteration is

pointed out. Also, an important observation is that all the significant changes occur in

the first iteration of the mixed process of plates.

The implementation of mixed finite elements without iterative solution is the

topic extensively studied several decades ago mainly with application to the linear

problems in mechanics as discussed in a survey by ZIENKIEWICZ (1977). These

experiences are found useful to avoid possible numerical difficulties particular in this

methodology. This is an important issue to be investigated. The characteristics of the

particular algorithm used as the post-processor needs to be understood in the mixed
method framework so as to fulfill the necessary conditions for the stability and

convergence. Regardless of the solution algorithm, the mixed method needs to satisfy

the stability condition referred to as the Babuska-Brezzi condition in some sense

[BABUSKA (1973), BREZZI (1974)]. However, when the equal order interpolations of

displacement and stress are used, possible dissatisfaction of this condition is indicated

by ODEN (1982). Possible oscillations of the numerical solution are indicated therein

under special circumstances.

As experienced in the mixed/penalty finite element computations for

incompressible problems, however, the implication of Babuska-Brezzi condition is not

quite clear. As discussed by ZIENKIEWICZ, NAKAZAWA (1982), the stability can be

achieved by using a class of unstable elements which violates the condition a priori but

produces stable results incorporating a post-processing algorithm which satisfies the

necessary condition for the stability

Modern development of the mixed finite element methods is mostly to set up

the displacement stiffness matrix from the element discontinuous approximation for

additional variables [TAYLOR, ZIENKIEWICZ (1982)]. The derivation of this class of

methods is based on the equivalence theorem stated in MALKUS, HUGHES (1978). An

V

V

V
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important development along this line is a generalization of the equivalence theorem

proposed in ZIENKIEWICZ, NAKAZAWA (1984) indicating that for all the nume-

ricaUy integrated displacement finite element method, there exists an equivalent class

of mixed methods based on the Hu-Washizu principle. This observation provides

some insights to the iterative process with particular application to inelastic problems.

As mentioned earlier, these developments of reducible mixed forms at the element

level are useful mainly to construct the preconditioning system of equations as well as

the fine tuning of the equilibrium iteration.

In developing high performance finite elements, the Hu-Washizu principle has

become the most popular variational formulation from which numerical methods are

derived. It seems the most natural approach, for instance, to derive algorithms for

probabilistic structural analysis methods. Also, methods to evaluate elements based on

mixed variational principles have been developed. In modern literature, the word

mixed and hybrid finite elements are often used interchangeably and ambiguously.

Seemingly, the mixed methods derived from piecewise discontinuous stress

approximation are usually referred to as the hybrid formulations and those derived

from independent strain interpolation and other mixed formulations are referred to as

the mixed forms. It is interesting to note that the word hybrid is used by a certain

sector of computational mechanics community referring to a class of methods com-

bining the finite element and boundary integral formulations.

Attention has recently been paid to the equal order interpolation for the mixed

finite element processes. Series of papers and reports have been coming out from not

only this project but also the research group at Swansea. A number of academic

research projects have been initiated in the recent few years.

The interest in the Hu-Washizu principle is rejuvenated by the untimely death

of one of the original investigators and the publication of his memorial volume [PIAN

(1984)]. Utilization of this principle for the analysis of existing methods such as

numerically integrated displacement formulation [ZIENKIEWICZ, NAKAZAWA

(1984)] appears in literature frequently. Belytschko (1986) reviews the technology
available for the thick plate and shell element formulation based on the Reissner-

Mindlin theory by this principle.

Efforts to use the mixed Hu-Washizu finite element equations as a driving

mechanism for the iterative solution of linear and nonlinear problems are reported in

recent publications [NAKAZAWA, NAGTEGAAL (1986), NAKAZAWA, SPIEGEL

(1986)]. With particular application to transient dynamics, a version of the mixed

iterative solution algorithm combined with a second order, single step time integration

operator is proposed and applied to a number of linear elastic problems by

ZIENKIEWICZ, LI, NAKAZAWA (1986).

An analysis of a certain class of mixed finite elements is discussed by LE TALLAC

(1986). An iterative algorithm based on the Hu-Washizu principle is derived for rate-

independent deviatoric plasticity. The elastic strain is used as a variable instead of the

S.Nakazawa MarcK 1991
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total strain. This formal alteration of the formulation in conjunction with the radial

return algorithm being hard-wired to the analysis enabled him to discuss the existence

of solution which leads us to the possible formalization of convergence characteristics.

For the evaluation of element formulations and the first step of finite element

code validation, the patch test invented by Irons and documented in BAZELEY,
CHEUNG, IRONS, ZIENKIEWICZ (1956) has been used by many researchers and

commercial code developers. NAGTEGAAL, NAKAZAWA, TATEISHI (1986) discuss

the development of an eight-node shell element based on the assumed strain approach

and demonstrate its validity by performing an extensive set of patch test.

The concept of patch test is re-examined in a recent paper by Taylor, Simo,

ZIENKIEWICZ, CHAN (1986) where the equivalence between the satisfaction of the

patch test and the consistency and stability of finite element approximations is

discussed. Note that the argument by STUMMEL (1980) seriously questioning the

validity of the patch test is countered in this paper.

An important extension of the patch test is proposed in a more recent paper by

ZIENKIEWICZ, QU, TAYLOR, NAKAZAWA (1986). Assuming that the consistency of

the approximations is satisfied, the test focuses upon the stability of mixed finite

elements implied by the Babuska-Brezzi condition [BABUSKA (1973), BREZZI (1974)].

The procedure is to count the minimum possible number of active degrees-of- freedom

in a patch and compare it with the maximum possible number of constraint degrees-of-

freedom. If no constraints are imposed on nodal stresses and strains, the mixed,

iterative solution procedure with continuous interpolation passes the test and is

assumed stable. An extension of this stability patch test to three field formulations of

Hu-Washizu type and for plates and shells derived from the Reissner-Mindlin theory

is being investigated by ZIENKIEWICZ (1986) and his co-workers.

The relation between the stability patch test and the mathematically derived

Babuska-Brezzi condition is also being actively investigated.

For the numerical modeling of singularities embedded in the structures, papers

on the fracture mechanics are surveyed. For the displacement finite element

technology, the report by FINE (1984) covers the technology to date. Except for a few

academic exercises such as reported in ANNIGERI (1984), not many papers and research

reports are available to mixed and hybrid finite elements with application to fracture

mechanics, in particular, nonlinear material problems. A paper by BABUSKA, MILLER

(1984) on the post-processing to detect the stress intensity factor is found useful to

construct and validate the numerical algorithm to be implemented in the MHOST

program. The general strategy for the numerical post-processing is extended to deal

with problems with singularities.

A series of papers by BABUSKA et. al. (1984) discusses the possible utilization of

the post-processing technology and the adaptive mesh refinement. The concept is

closely related to the mixed iterative solution algorithms in conjunction with the

V

V

V
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subelement calculation as discussed later in this report. Literature on the adaptivity and

a posteriori (See GAGO (1982) and literature cited therein) error estimate is found

useful in this line of development.

The methodology to compute the approximation error in a finite element

solution has been improved significantly in the last few years. Also, the adaptive mesh

refinement algorithms based on the spatial distribution of error indicator are developed

and applied to a wide range of linear and nonlinear problems. A book on this subject is

compiled by Gago which represents the state-of-the-art [BABUSKA, ZIENKIEWICZ,

GAGO, OLIVERIA (1986)].

The papers included in the book indicate that a posterior error estimate and

adaptive refinement methodologies are well understood mathematically and tested for

a wide range of linear elastic problems. However, the computational processes look

overly complicated and extensions to nonlinear analysis of solids and structures will
need further research and development. Application of the adaptive mesh refinement

concept has been demonstrated tractable using a relatively simple error indicator with

application to aerospace flow problems given by the compressible Euler equations.

Note that the adaptive solution of compressible Euler equations are the first systematic

attempt of extending the technology to nonlinear problems. The results included in
the book shows the potential advantage of the concept over the commonly used finite

difference technology.

A simple algorithm to estimate error a posteriori is proposed by ZIENKIEWICZ,

ZHU (1986). The logic is based on the difference of quantities obtained directly at the

elements and the same information projected by nodal interpolation functions. The

nodal projection techniques used in the mixed, iterative process to recover the nodal

strain is the simple and effective way to calculate errors. This process is relatively

simple to implement in comparison with seemingly complicated mathematically

derived a posterior error estimate algorithms. Examples shown in the paper indicate

the efficiency of the proposed process. However, rigorous mathematical analysis is still

to be done to verify the methodology. It is interesting to note that the residual vector
calculated in MHOST at the zeroth iteration of the equal order mixed iterative solution

is indeed the Zienkiewicz-Zhu error indicator weight-averaged at nodes.

Using triangular elements, efforts to combine automatic mesh-generation and

adaptive refinement concepts have been reported. Examples included in
ZIENKIEWICZ, ZHU (1986) uses this idea. In application of adaptive mesh refinement

to compressible flow problems, a number of papers are published in which triangular

mesh generation methods were discussed with local refinement strategy to capture
shocks. PERAIRE, MORGAN, ZIENKIEWICZ (1986), LOHNER (1986) discuss adaptive

mesh refinement and de-refinement algorithm designed for the triangles and speculate

the applicability of the concept to three-dimensional computations. The use of

automatic mesh generation of triangular and tetrahedral elements has been found a
useful trick in finite difference flow computations using unstructured grid. JAMESON

(1986) demonstrated possible utilization of this technology for geometrically complex
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problems.

In the area of a posteriori error estimates, post-processing and adaptive mesh

refinement, useful technology has been developed for linear structural analysis and

certain nonlinear problems. However, further research and development including

extensive numerical experiments are required to establish a methodology usable for

three- dimensional inelastic analyses involving complex loading histories.

A series of note by AXELSSON (1976, 1978) indicates the possible utilization of

successive relaxation techniques for the solution of finite element equations, in

particular, the mixed system of equations. However, no evidence that such algorithms

can be used for nonlinear solution is provided in those publications.

Application of finite element methods to nonlinear structural analysis involves

increasingly complicated geometrical and material models and utilizes performance of

currently available supercomputing facilities to their limits. Codes specifically designed

for supercomputers have demonstrated their potential. Papers have appeared recently

discussing performance improvement of finite element codes on vector and parallel

machines utilizing algorithms tailored for specific computer environment. BENSON,

HALLQUIST (1986) discusses the rigid body algorithm implemented in DYNA code

which reduced the amount of computations significantly in explicit finite element time

integrations. Implementation of an iterative solution algorithm based on the element-

by-element preconditioner in NIKE code is discussed by HUGHES, FERENCZ,

HALLQUIST (1986). The utilization of supercomputers in an engineering

environment involving the development of these codes is presented by GOUDREAU,

BENSON, HALLQUIST, KAY, ROSINSKY, SACKETT (1986).

Investigations of vectorizability of basic finite element operations continue. For

instance, the detail of vector-matrix multiply in element-by-element manner is

discussed including timing figures for various finite element models by HAYES,

DEVLOO (1986). An algorithm to potentially take full advantage of vector machines to

solve a system of ordinary differential equations is proposed by Brown, Hindmarsh

(1986). Iterative algorithms based on the ORTHOMIN method and incomplete

factorization are studied by ZYVOLOSKI (1986). It is anticipated that the development

of algorithms closely tied to the actual data manipulations and arithmetic operations in

computing machineries will eventually lead us to write faster finite element codes not

only on supercomputers but also on smaller scalar machines.

Utilization of parallel computing for the equation solution is a subject

investigated extensively_n the last few years. A series of papers by Utku, Melosh and
their collaborators look into the possible parallelization of direct stiffness matrix

factorization [UTKU, MELOSH, SALAMA, CHANG (1986), U'II_, SALAMA, MEL£)b_

(1986)]. The possible utilization of hypercube architecture is studied by NOUR-OMID,

ORTIZ (1986) for the factorization and iterative solution of finite element equations. It

is observed in these papers that the plain reduction of total number of operation does

not always provide an optimal algorithm for vector and parallel processing. Increasing
number of sessions are devoted to discuss this aspect of finite element computations in

V
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scientific meetings, and literature is being accumulated. However, further research and

development still needs to be done before robust algorithms become available for a

wide range of engineering applications which fully utilize the potential of modem

computing machineries.

Notable progress has been made in the last few years in the field of

computational plasticity, in particular, design and analysis of integration algorithms for

rate-independent plasticity constitutive equations. ORTIZ, SIMO (1986) summarizes

the development of integration algorithms and investigates the accuracy in great detail.

The basic idea is to generalize the return mapping algorithm based on the elastic

predictor. An extension to viscoplastic constitutive equations are included in this

paper. SIMO (1986) extends the results to finite deformation plasticity developing a

simple and efficient finite element algorithm in which elastic deformation of finite

amplitude is accommodated.

Approaches to capture the localization due to the inelastic material response in

global finite element computation have been developed which enable one to capture

discontinuities occurring at subelement scale. The work by HUGHES, SHAKIB (1986)

extends the conventional return mapping algorithm for J2-flow theory to the yield

surfaces with comers. This extension can be used to capture the effects of localized

plastic flow in a global manner. ORTIZ, LEROY (1986) proposes an algorithm which
allows shear bands to generate inside of a finite element. The numerical results

indicate the potential of the method to capture local failure of structures without

excessive mesh refinement. Ideas to bring in the local failure mode in finite elements

to capture localization effects under strain softening are discussed by WILLAM, SOBH,

STURE (1986). A survey of the finite element technology for capturing the localized

failure modes is given by NEEDLEMAN (1986). This is a relatively new field and

further work will lead us to effectively calculate the localized microscopic material

responses due to the embedded singularities in large scale structural systems.

In the theoretical aspects of finite element development, the utilization of mixed

variational principle has been and will be the main thrust of the research and

development. This approach not only provides us with tools to improve the

performance of elements but also lets us get a deep insight on the solution algorithms

for linear and nonlinear problems. The mixed iterative methodology developed under

HOST contract takes full advantage of these modern theoretical developments. Also,

new ideas demonstrated in the MI-IOST program has attracted academic research

interest in the computational mechanics community.

In the appIication and computational aspects of finite elements, significant

progress made in the last few years has not been fully incorporated in the MHOST

computer code development. The information available in literature indicates that
further development to utilize modern algorithms and coding technology would

enhance the performance of the MHOST code considerably.

S.Nakazawa March, 1991



MHOST Theoretical Manual 14

V

2. VARIATIONAL FORMULATION AND COMPUTATIONAL PROCEDURES

Introductory Remarks

This chapter is devoted to the problem statement and its solution strategy of a class

of problems dealt with in the framework of MHOST finite element program

package. We first establish the notation used throughout this report in the form of

the differential equations and then derive the variational statement suitable for the

construction of the mixed iterative finite element analysis. In order to maintain the

generality, the nonlinear transient problems used as the vehicle for this develop-
ment in which the conventional quasi-static problems are included as a subclass.

The Global Solution Strategy

The nonlinear problem to describe the inelastic response of a material body in an

open, bounded domain f) with sufficiently smooth boundary _fI is stated in this

section and an augmented form of the generalized nonlinear Hu-Washizu

variational principle is derived in the infinitesimal deformation setting. A generic

solution algorithm is constructed which is valid for the quasi-static and the

dynamic-transient analysis.

The procedure discussed here can be incorporated with various solution

algorithms and time integration operators other than the conventional Newton-

Raphson and Newmark-f3 methods.

The equilibrium equation is written in terns of Cartesian components of

stress tensor as:

-C_ij,i = p(fy- aj) in g2 (2.1)

where p is the material density, assumed constant, with cL a and f being the stress

tensor, the acceleration vector and the body force vector, respectively.

We assume a rate constitutive equation in a generic form

6 ij = Dqkl_- kl (2.2) V
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with D and E being the material modulus and strain tensor respectively. The strain

components are given by

1 u 0 (2.3)

with E 0 being the initial strain due to the thermal expansion and creep effects.

Usual equality constraints for the displacement components are imposed on the

boundary such that

uj = ffj on c3tq I (2.4)

and
0

t j = cron i = t j on dO 2 (2.5)

The weak variational form associated with the above problem statement is

((rq,u_,j) : (p(fj- aj),u))+ (t?,uj) (2.6)

and

('I )J)eij , Oi./ - Dijkl(ekl- eOt =0 (2.7)

Oij , Eij -- _(Ui, j + Uj,i) ----0 (2.8)

where (.,.) denotes the usual L 2 inner product over the domain, defined by

(u,v)=fuvdx u,vc (f )
D

and <.,.> is the integral defined on the boundary defined by

(u,v) = fuvdx
OD

u,v L2( )

with the superscript * indicating the arbitrary variations from an appropriate space

of admissible functions.
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Elimination of the stress and the strain from the above system of variational
equations results in the virtual work equation in terms of displacement

*) =a(u,u - (f ,u*) 0 (2.9)

with a(.,.) being the usual energy product defined by

a(u,v) = f ui.j DijklVj,idx

f_

The essential boundary condition, Equation (2.5) can be incorporated by virtue of
penalty

°.:>--0

or equivalently

(°U _,)_U + E-l(//- uO U*)

* 0 *=(o{:,- (2.11)

It is obvious that the simultaneous weak variational statements, Equation (2.6 - 2.8),
can be derived directly from the Hu- Washizu principle. This observation implies
that the boundary conditions, Equations (2.4) and (2.5), are entered to the system of
equations only via the conservation law for the linear momentum. In this setting
imposition of boundary conditions for stress and strain is unnecessary. If such
conditions are applied, the well-posedness of the problem may be disturbed yielding
erroneous solution or possibly a rank deficient system of equations.

Note that the penalization for the Dirichlet boundary condition does not
require the space of admissible variation to fulfill the homogeneous counterpart of
the same condition.

Using the equal order interpolation function for all the variables involved
in the analysis, we have

h (2.12A)uj = NKU.i K

h ,i

aj = NKa)K = NKUjK (2.12B)

V

V
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e_ = NxEqx (2.12C)

0 h = NK Sq K (2.12D)

and for the data

f_- N_FjK (2.12E)

Oh 0
_o = NxE_jx (2.12F)

resulting in a system of algebraic equations

 /I:t={!-'a}
-c t o lts J

(2.13)

where the submatrices are defined as

v= Iv,,_l E-{E;,,} s-Isis,}

B--[aj_,.] n,j_,_-f NK,jU,dx
F_

c =[%,_ c,_,,,_=fN_N_d_
f)

D = [Dqk,KL] DqktKL = fNKE_jk,NLaX
fl

M = [ MiiKL] MiyKL = Of NxNLdx
£1

with the loading vectors defined by

F = IF/L] ELffNLPfdx+fNL?dS
£1 of 1

6 = [G,;L]O,jLffifNLE,jkteOdx
f)

Note here, for the sake of simplicity, the integrated form of the rate constitutive
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equation is assumed. We shall discuss the detail of incremental process and the
stress recovery later in this chapter. The elimination of the nodal strain and stress

lead to a displacement solution form:

with

{(B(C)-'D(C)-IB')+ P}U= F- Ma
(2.14)

F= F + {B(C)-tD(C)-IG} (2.15)

whereas the standard finite element form based on the statement (2.9) is

approximated by a somewhat simpler form

(K + P)U = F-Ma (2.16)

An iterative solution algorithm is constructed first to the quasi-static counterpart of

Equation (2.13) assuming the time derivatives of displacement vector are
sufficiently small:

(i) Initialize the residual and displacement vector

R:=O ; U:=O

(ii) Solve the preconditioning equations to update the displacement such that

U: = U + A-'( F- R) (2.17)

(iii) Recover the nodal strain

E: = C -I B U- E ° (2.18)

Integrate the constitutive equation

S: = rD( S,E)EdT (2.19)

T

with t being the quasi-time associated with deformation history.

Evaluate the residual

R: = _"- B S (2.20)

(vi) If the residual is small enough then exit; or else repeat from the step (ii).

(iv)

(v)
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As is obvious from the above discussion, the choice of the preconditioner A is

crucial to obtain the convergence characteristics necessary for the practical

implementations. For instance, if we can construct

P} (2.21)

then no iteration is needed. However, the spareness of the finite element system of

matrix is no longer exploited if the above form were to be utilized. As a reasonable

compromise, we use the augmented equilibrium equation by the displacement

stiffness matrix which is to set

A =K +P (2.22)

Other methods of preconditioning has been investigated but so far no robust scheme

is known for a wide range of solid and structural analysis. See for instance,

MULLER, HUGHES (1984). Except for minor modifications, the present solution

utilizes the form defined by Equation (2.22).

Global-Local Analysis by Subelement Iterations

Computational fracture mechanics aspects are discussed in this note of the inelastic

analysis of turbine engine hot section components. The motivation of this

endeavor is to seek an economically feasible numerical process without sacrificing

the accuracy of the solution.

The standard finite element method is to take the effect of embedded

singularities into account by refining the mesh subdivision in the neighborhood of

such points or alternatively to introduce special elements with singular functions in

the same region. This currently available approach is often prohibitively expensive

especially when it is applied to the analysis of a structure with multiple singularities

of which each needs special treatment.

The use of nonstandard schemes, in particular the mixed finite element form,

is found in the previous section far ............... compared with the

conventional schemes with application to regular nonlinear structural analysis.

Hence its utilization for the problems including singularities is worth investigating

to realize a major breakthrough in the computational fracture mechanics.

The main objective to use the mixed finite element method for problems

with embedded singularities is that higher resolution for stresses and strains is to be

obtained without excessive mesh refinement for the displacement variables near
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the singularities.

In the framework of displacement finite element method, only available

information primarily from the computation is the nodal displacements from

which the strain/stress components are calculated by differentiating the shape

functions. Then these quantities are used to evaluate the fracture mechanics related

quantities such as the stress concentration factor and the J- integrals.

Noting that the accuracy of strain/stress components is a full one order less

than that of displacement for the displacement finite element method even without

a singularity. Moreover, the approximation of strains/stresses could be extremely

unstable near singularities and the area where the deformation is highly con-

centrated. To obtain accurate results for a problem with embedded singularities by

the displacement technology, the mesh refinement at around the singularities is

unavoidable so as to obtain accurate and stable displacement field which indeed is

the only source to generate the strain/stress approximations. For the best possible

results, monitoring a posteriori error indicator and several passes of (adaptive)
mesh refinement are advisable for such calculations.

When the strains or stresses, sometimes both, are included explicitly in the

finite element system of equations, in particular interpolated by CO- continuous

basis functions, the resulting approximations are not only accurate but also stable

having no spurious modes in the strain/stress recovery operator.

For regular problems, the numerical representation of stress field in

particular is quantitatively accurate due to the equilibrium condition being explicitly

evaluated by the approximate stress field itself. Compared with the displacement

method, a full one order improvement is indeed expected of the convergence rate
for the mixed method for the same mesh subdivision. It is noticed that the role of

displacement solution in the mixed form is to generate qualitatively the defor-

mation mode from which indirectly the deformation gradient is extracted and fed

into the stress recovery and equilibrium iteration operations. Therefore the quanti-

tative measure for error in displacement vector contributes relatively less signifi-

cantly to the overall evaluation of fracture related quantities.

The approximate solution procedure for a deformable body with embedded

singularities is first to solve the structural problem without crack which shall be

specifically referred to as the global system and then to compute the deformation

and the stresses near the singularity separately. This portion of the domain is called

the local system. The concept is somewhat similar to the substructuring in the

conventional finite element computations.

Topologically the global mesh is constructed such that the minimum element

V

V
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size is much larger than the scale of singularities so that no singularity is identified

by the global system. The local system is constructed in a single global element and

coupled with the global system through common nodes between the global and

local elements within.

A major difference of the present approach from the substructuring is that the

local refinement takes place a posteriori and the information extracted from the

locally subdivided element is brought back to the global mesh via the residual load

correction. This implies that no special algebraic treatment is required even when

the material nonlinearity occur in the sub-element region.

The solution strategy is indeed a mixed version of the hierarchic finite ele-

ment process which has been investigated in the recent few years and the results ob-

tained are encouraging for elastic stress analyses with singularities. The compu-

tational strategy we propose here is to define the local mesh and the refined inter-

polation altogether in the region near the singularity somewhat similar to com-

bined h-p refinement.

As the result, we shall obtain accurate stress-strain solution in the global

approximation subspace enriched by the local approximations.

The final solution to be obtained is in the global-local system with the global

system being used only for preconditioning purposes. This means that the factor-

ization of approximate globaI stiffness matrix obtained by the conventional displace-

ment method may be sufficient to kick off the present solution procedure.

Consider as the second example a single displacement element with an em-

bedded singularity, a hole. Some computational aspects need to be considered here

with application of present method to practical problems of turbine engine hot

section components. From the programming point of view, a parametric repre-

sentation of an elliptic hole by its size, orientation and location in a displacement

element is convenient allowing the code to generate subelement mesh data when-

ever this calculation is performed. The data structure could be simple as no perma-

nent storage allocation is required for the subelement mesh. In Figure 2.1, an

example of such a ready made subelement mesh is presented for a circular hole

located at the center of displacement element mesh.

On the other hand, it may be user friendly and perhaps conceptually more

general to explicitly define the subelement mesh as an additional data set. The data
structure then needs to be reviewed so as to allocate additional memory for sub-

element mesh storage.

As experienced in the h-version of adaptive mesh refinement, it is anti-

cipated that the concept of subelement mesh could be used recursively in a similar
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fashion as the multi-level substructure technique. A well organized data storage
scheme needs to be developed to realize the fully flexible implementation of the

proposed scheme. In the following discussions, the subelement mesh is defined in

the isoparametric element coordinate system rather than the physical space in

which the global mesh is defined.

Y

X
y

Global Element

l
Subelement Mesh with
an Embedded Hole

V

T1 Isoparametric Map of an Element
in Subelement Mesh

()

()

Figure 2.1 Multiple Mapping in the Subelement Mesh Refinement V
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The stresses and strains are represented at the nodes of subelement defined in

the first reference plane in an exactly same manner as the one dimensional

example.

We introduce variables to characterize the internal deformation of stress and

strain subelement so as to obtain these quantity uniquely in an accurate manner. As

mentioned in the first section, some further mathematical investigation is required

to come up with an optimal combination of subelement mesh definition, functions

to represent the deformation of subelement and the stress-strain interpolations.

A major difficulty encountered in the multidimensional computation is to

integrate the coupling matrix B over the subelement. Noting that once the size of
hole and its location are identified, the values of displacement interpolation

functions are obtainable at every nodal point of subelements. Denoting these

quantities by N , we introduce the local displacement-type interpolation of N in

these elements by

N = N SN K (2.23)

and the coupling matrix is integrated approximately by

(2.24)

where the superscript S denotes the functions defined at the subelement level. The

calculation is carried out on each local subelement _S and summed over the global

displacement element. This general integration procedure plays a central role to

couple the global and local mesh representing the residual load vector at the global

displacement node entries yet reflecting the information at the local element level.
For the consistent definition of this operator matrix, the transformation of shape

function from global to local needs to be carried out as defined by Equation (2.23) on

the isoparametric element space which is again mapped into another isoparametric

space defined on each subelement. It is obvious that the location of nodal points

needs to be given in the element coordinate system.

When the location of subelement nodal points are specified in the physical

plane, the inverse of nonlinear isoparametric mapping needs to be calculated to

locate them in the element coordinate system.

We outline the solution strategy in a general format. First we introduce the

conventional stiffness equation with respect to the local hierarchial displacement
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degree of freedom U as the precondifioner, which is

KSu s = Fs; F s = F _- BSs G (2.25)

derived directly from the virtual work principle in terms of displacement. A

modified recursive form of mixed finite element equations is written again in terms

of local unknown variables

{!sl
LB,' -c o/Is'j

(2.26)

Setting U (0)= 0 and S (0) = 0 with the superscript being used for the iteration

counter, we solve the system of displacement equation

(2.27)

Then the stresses and strains are updated in the subelement region by solving

iteratively with u being the enriched displacement in the subelement region. To

obtain this quantity, the factorization of displacement type stiffness equation is

indeed unavoidable in this region.

In the solution of local system of equations, the traction boundary condition,

Equation (2.5) is specifically imposed which cannot be applied to the solution of

global finite element process. In the part of global mesh where no singularity is

embedded, conventional recovery procedure is used prior to the above calculation.

Solution of Equation (2.27) is improved in comparison with the global mixed

solution by the local information contained in the righthand side. The use of

additional terms characterizIng the deformation near the singularity needs to be

considered. The simplest approach is to take the displacement as a dummy variable

at stress-strain nodal points interpolated by conventional polynomial basis

functions In a similar manner as the substructuring technique.

When such variables are introduced the solution procedure becomes very

close to what is called the multi-grid method in the finite difference context. The

overall solution flow is:

(i) Solve the global stiffness equations for the global displacement, i.e.,

V
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(ii)

(iii)

(iv)

(v)

(vi)

(vii)

Recover the strain at nodes in the global finite element mesh.

Evaluate the stress.

Enter the inner loop and calculate the displacement quantity (used only as
dummy variable) in the subelement mesh.

u(n÷l)S -_ U(n)S + (KS)-I{ F s- BS s (n)s }

Evaluate the subelement stress and strain.

Check the convergence in terms of residual in the subelement mesh. If not

converged, repeat from step (iv).

Evaluate the global residual including the stresses in the subelement. If

convergent, start a new increment, or otherwise repeat from step (i).

R:=_'-BS s

Through the inner loop, the global finite element mesh interact with the
subelement and an accurate, high-resolution stress field is obtainable without

increasing the size of global stiffness equations.

The additional coding is required to incorporate steps (iv) to (vi), which is

performed by adding a element routine to handle the embedded singularities, and to
allocate the core storage associated with the arrays used for the inner iteration. The

size of algebraic equations used for representing the embedded singularity is limited

by restrictiong the mesh pattern and the level of mesh refinment introduced
through the subelement technique.
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Incremental Iterative Solution Algorithms

The inelastic problem is solved through the deformation history in an incremental

manner which is for a given state of displacement, strain and stress which satisfies

the nonlinear algebraic equation (2.13) for a given load and displacement boundary

conditions by U,E, S and F respectively.

V

Adaptive Load Incrementation Procedure:

For a given load increment AF, the increments of displacement, strain and stress

denoted by AU, _, and AS are determined in an iterative fashion as described in

the previous section. Note in the preconditioning process the tangent stiffness K is

used instead of the total stiffness equation. To follow a complicated equilibrium an

automatic adjustment procedure procedure tO control the size of load increment in

the iterative process is introduce& The algorithm is schematically given as:

(i) Set the residual vector R: = 0;

Initialize the incremental displacement vector AU: = 0;

Set the iteration counter i: = 0.

Apply the proportional load AF:= ;_F with r being the current load factor.

(ii) Update the displacement

AU: = AU + dU (2.28)

with the update

dU:= K-I(Fo + AF- R) (2.29)

being stored in the memory, where l_ is the load vector at the beginning of

the current increment.

(iii) For a given arc-length, find the total load factor update

;_:= ;_ + d;_ (2.30)

and the incremental load factor

_;_:--- a_ + d;_ (2.31)

based on the spherical path formulation [Crisfield (1980)].
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(iv)

(v)

Modify the load

A F: = A 2_r (2.32)

Form the residual in the mixed manner as indicated in steps (iii) to (v) in the

previous flow chart. If convergent, then exit; otherwise repeat from step (ii).

=

BFGS Update Procedure

For the iterative process using the mixed residual vector, any iterative method to
improve the convergence characteristics applicable to nonlinear finite element
calculations can be used for the present approximation method. For instance, the

BFGS update procedure [Matthies, Strang (1979)] is utilized in the following fashion:

(i)
that

(ii)

(iii)

(iv)

(v)

(vi)

(vi)

Initialize the residual vector R and the incremental displacement AU such

R: = 0 ; AU: = 0

Modify the residual with i being the iteration counter

[lk=lt,-n/ 1
Ttt,

Intermediate displacement update

dU = K-1F

Complete the displacement update

= _n [1+ wkvT)du

(2.33)

(2.34)

(2.35)

(2.36)

Form the new incremental displacement

AU: = AU + dU (2.37)

Form the new residual with respect to the updated incremental displacement

using steps (iii) to (v) in the first flow chart.

Check the convergence and if necessary repeat from the step (ii) or else, exit.
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Note in the above algorithm, vectors v and w represents the iterative change in
the residual and the displacement vector respectively so as to form the inverse

BFGS update

T -1 w T)Knl= (1 + WnV,)Kn-l(1 + v n (2.38)

It is possible to introduce the combined BFGS - arc length algorithms in the mixed

iterative solution algorithms incorporating the line search technique.

The Line Search Algorithm

The line search algorithm is used for the acceleration of niterative solution

processes. After an update vector du for the velocity is obtained for a current
displacement increment, we seek for a search distance s which approximately
satisfies the orthogonality condition

g =_)utR(u -_u) =0 (2.39)

An iterative algorithm [Abdel Rahman (1982)] is implemented to find zero for the
above defined function g of which the extrapolation procedure performed at each
iteration is illustrated in Fig.2.2.

V

g

go

gl

1

Figure 2.2 Linear Extrapolation in Nonlinear Line sraech

The compuational procedure is schematically written as:
V
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(i)

(ii)

(iii)

(iv)

(v)

(vi)

Set s= 1

Recover the residual vector

R.= R Ct - s_ u )

Inner product to evaluate the function

g =_utR

If g -<e a predefined tolerance then exit; else:

Extrapolate linearly the search distance such that

g

s" s g _ go.S

If s_>so , with so being the prescribed upper bound, set s = so .

(2.40)

(2.41)

(2.42)
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Formulation of Finite Deformation Analysis Procedure with Particular Emphasis on

Plasticity

The formulation and algorithm for the analysis of finite deformation problem

implemented in the MHOST mixed iterative method is described in this subsection.

The formulation utilizes the kinematics of updated Lagrangian concept. The choice

of deformation and stress measures in the finite deformation analysis depends

primarily on the form of the constitutive description involved, along with the

necessity that the measures are objective for rigid body motions. For elastic-plastic

behavior where the response depends primarily on the current state of stress, a

Cauchy stress and rate-of-deformation constitutive formulation is frequently the
most convenient choice.

The constitutive integration algorithms in the updated Lagrangian fromu-

lation is essentially the same as those used for infinitesimal deformation cal-

culations, with the exception that all tensors and integrals are evaluated with respect

to the current configuration. The present version of this update strategy utilizes the

nodal coordinates updated continuously during the iterations in conjunction with

the deformation gradient evaluated simultaneoulsy at nodes.

We shall now summarize the iterative solution algorithm for an increment.

Following initialization, the process is repeated iteratively until the equilibrium has

been satisfied.

(i) Initialization:

U i = U i-1 S i= 8/-1 R: = F (2.43)

(ii) Equation Formulation and Displacement Solution:

AUi= K-1R i (2.44)

(iii) Update Geometry:

x i+1 ffi x i + AU i (2.45a)

U i+1 = U i + AU i (2.45b)

(2.45c)

V

V
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(iv)

(v)

(vi)

F i+1 ( )F 1+_rel = I + V A U i = Yrel"-i +.1.2Fi

F I+I F_ i+_Fi= rel

• i+M i+4'C 1

FI+I _ i+.t i= yrel 2F

Strain Projection:

AEi÷ _ (Ci÷I)-TK+IAUi

Stress Recovery:

Rotate Back to Global System: For stress components

i+3._i+If i+4_ T

and for plastic strain components, we have

i+1¢ E _i+1(,o i+l_ T(EpL) i+1= R _ PL)R _:,'X. }

Material tangent is updated as

(D)i'I=Ri+I(D)_I(Ri'1) T

Internal variables susch as the back stress is also updated by

(a)i+l= Ri+l(a)R+l(Ri+l) T

(2.45d)

(2.45e)

(2.45f)

(2.45g)

(2.45h)

(2.46)

(2.47)

(2.48a)

(2.48b)

(2.48c)

(2.48d)
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(vii) Form Residual:

R i÷1= r(Ni÷ll Tf N dx-i÷1 i÷1 i+1 Bi÷lsi÷l (2.49)

If converged exit, else update displacement via line search or displacement solution
and repeat. In the finite displacement calculations, the stiffness array is assembled
in the following manner and repeatedly updated in the iteration loop unless other
iteration process (modified-, quasi-, or secant-Newton option) is specified. Note that
this stiffness matrix update does not correspond to the classical Newton method in

the mixed iterative solution framework because of the independent CO- continuous

stress interpolation functions with K being the index for nodes,

o h -" N K SK (2.50)

Whenever the stiffness matrix is reformulated in an updated Lagrangian

algorithm, the shape functions, derivatives of the shape functions and determinants
of Jacobians are evaluated with the nodal coordinates of the current configuration.
In addition, the material and stress matrices are also the values computed in the

immediately preceding iteration. V

Semidiscrete Finite Element Equations and Temporal Discretization

The finite element equations of dynamic equilibrium for a deformable body is
written in terms of nodal acceleration vector a, nodal velocity vector V and nodal
stress vector S as

Ma+CV+BS-F (2.51)

where M is the mass matrix defined by

M = pfNTNdx
gi

(2.52)

with r and N being the material density and the vector of interpolation functions,

respectively. The damping matrix C may be defined as a linear combination of mass
and stiffness matrices, M and K, such that

C = plM+ p2K (2.53)
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\ J

\ J

v

with Pl and P2 being preassigned constants representing the effects of viscous and

structural damping, respectively. Symbolically, the stiffnessmatrix can be written by

K =I(vN)TDVNdx

fl

(2.54)

with E being the gradient operator and D the material modulus. The third term in

Equation (2.47) represents the internal energy with B matrix being the discrete

gradient operator defined in the finite element approximation subspace such that

B =I(vN)TNdx

El

(2.55)

Note that this array differs from usual displacement-strain matrix in conventional

finite element computations.

Here the equal order interpolation using the same basis function is assumed

for the acceleration, velocity, displacement, and stress. Introducing the process to

recover the nodally interpolated strain by

E = GBU (2.56)

where G is the diagonalized gramm matrix of which Ith diagonal entry is calculated

by
N.oa_

K_I_

with Nnode being the total number of nodes in a mesh. Then the stress is

recovered at nodes.

Note that all the integration appeared in the above equations are evaluated

approximately using the numerical quadrature. The particular choice of the

numerical integration rule is discussed in the subsection of element formulation.

Now we construct an abstract iterative process for the semi-discrete Equations

(2.52) using the displacement preconditioning. The approximation of internal

energy by the product of stiffness matrix and total displacement vector u leads to a

recursive expression

M d +1 + CV i+1 + KU i+1 = F - (BS i- KU i) (2.58)
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with subscripts denoting the iteration counter. For the linear elastic problem, the

displacement converges linearly for an appropriate initial condition such as U = 0.

Note that the strain projection procedure and stress recovery operation,

Equations (2.56) and (2.58), are executed every time when the displacement vector is
updated.

The fully discretized system of equations is derived for the mixed iterative
solution by introducing the temporal approximation. For the sake of simplicity and
clarity when it is implemented, the Newmark family of algorithms is introduced in

a finite difference fashion e.g., HUGHES (1984) such that the dynamic equilibrium is
satisfied at time t + Af

Ma_÷n + CVt+at + BSt+at-_ Ft+_t (2.59)

which leads to a time discrete displacement preconditioning

i÷l + cvt÷ i+l + KUt+ati÷l

i KUt +at i)= F-(BS,÷At - (2.60)

and the updates for displacement and velocity are given by

i At2 i
U,+_ = U, +AIVt + _1(1- 2151a,+ 2flat÷,_}2

(2.61a)

v[., _v,+_{(1-y)a,+y_/,+_} (2.61b)

Introducing

au[ = Ut+at- U t (2.62a)

and

_u[oau['- au_ (2.62b)

we obtain a recursive form

M Y---- C++I0 / 1

V

S.Nakazawa March, 1991



MHOST Theoretical Manual 35

= Ft+_t- BS;+a + + C AU

(2.63)

with the incremental displacement Du being updated by

AUj--Auj+ (2.64)

and the incremental strain recovered at node by

i = G-1BTAUI+AtAEt+at (2.65)

In a general setting of history dependent inelastic constitutive integration, the stress

recovery process is written as

i

Ft+At
S[+a = S + SdE (2.66)

which is fed into the equilibrium iteration defined by Equation (2.63).

Computational effort involved in the above iterative process for direct time

integration of the discrete equation of motion is the assembly of element operator

matrices appear in the left-hand side of Equation (2.63). This is exactly the same

amount of effort required to solve the problem by the conventional displacement

method. Additional computation required for the mixed solution is a few back

substitution and strain and stress recovery at nodes which are relatively

inexpensive compared with the matrix assembly and factorization. This additional

computational cost would vanish when the scheme is applied to nonlinear

problems. The matrix assembly and factorization or back substitution needs to be

performed repeatedly no matter which finite element method is used to drive the

solution. Therefore, seemingly complicated derivation of the mixed iterative solu-

tion scheme does not increase the computational effort in comparison with the

displacement formulation to fully enjoy the advantages of equal order interpolation

of displacement, strain and stress.

With particular application to turbo machinery blades and other rotating

structures, the stiffness matrix is modified to include the effects of stress stiffening

and centrifugal mass terms. These are linearized models of large displacement and

follower force around a given state of stress due to the linear elastic response of
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structures under a given angular velocity.

The centrifugal load vector is generated by integrating the body force

Fo = f Nf)to2 r(x)dx
I1

(2.67)

with to being the angular velocity and r the distance between the point and the axis

of rotation. Under the centrifugal loading given above, the mixed iterative

algorithm results in a certain stress field represented by the nodal stress vector s

such that the discrete equilibrium equation is satisfied. Our interest is to calculate

the linearized response of structure under the state of stress given by S0. Taking

the initial stress terms into account, the equilibrium equation is modified (excluding

the damping term) to

Ma+ K_U + BT S = F (2.68)

is the geometric stiffness term associated with the initial stress field swhere K

given by

Kg = f V N T SV Ndx (2.69)
_v

fl

Note that Equation (2.64) is a general expression for the linearized response of

structural systems trader a prescribed initial stress field.

When this term is included in the mixed iterative computations, the abstract

recursive form, Equation (2.55) is modified to

+ °+K)u )

or in terms of displacement update

Ui+ 1 = U i + AU i

(2.71)

with

In the residual force calculations, the initial stress matrix needs to be evaluated

V

V
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repeatedly with the stress field calculated at the beginning of the increment.

The additional force due to the relative motion from the equilibrium
position referred to as the centrifugal mass term is also added to the equilibrium

equation resulting in

Ma+ (I_ - Mc)Ui÷I + BT S = F (2.72)

where M is the centrifugal mass matrix defined by

Mc " f p2NTLNdx (2.73)

with L being the matrix of unit vector m parallel to the axis of rotation given by

L ___.

m 2+m 2 -mlm2 -m3mll

,,q÷,,q I
- - + J

(2.74)

Note that when this term is activated in the quasi-static and transient dynamic com-
putations, the same correction of the residual vector calculation as for the stress
stiffening terms as indicated in the right-hand side of Equation (2.71).

Typically, these optional terms are activated for the vibration analysis of

rotating structures by extracting the modes from an eigenvalue problem

In the modal analysis, the displacement preconditioner is assumed to
represent the stiffness of structures. However, the stress data used in the evaluation
of initial stress terms are calculated by the mixed iterative method which generates
more accurate stress field than the conventional displacement method. Hence, the
solution of Equation (2.75) is expected to be somewhat more accurate than the

displacement method solution.

For the detail of the derivation of initial stress and centrifugal mass matrices
and fully worked out examples, see THOMAS, MOTA, SOARES (1973), RAWTANI,

DOKANISHI (1974).
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Additional Remarks

In the present implementation of mixed iterative solution, the displacement

stiffness equations need to be assembled and factorized. To enhance the efficiency of

MHOST code, the profile solver replaces the constant bandwidth Crout decomposite

algorithm. The implementation of solver is based on the code published by

TAYLOR (1985). The code presented in the paper include both symmetric and non-

symmetric cases using the Crout decomposition. The implementation of MHOST

code excludes the nonsymmetric part of code to gain the maximum efficiency. The

profile storage of the global stiffness equations reduces the memory requirement

and time required for factorization. Computational overhead is added to prepair the

elimination table for a stiffness matrix stored in profile form.

In the quasi-static computations, option added to accelerate the rate of

convergence for nonlinear iterations are made functional incorporating with _e

profile solver. These options are the modified Newton, quasi-Newton method of

inverse BFGS update, secant Newton implementation of Davidon rank-one quasi-

Newton update, conjugate gradient and line search. The spherical path version of

arc length method incorporating with the modified Newton iteration is also made

available for the profile solver.
T

The eigenvalue extraction procedure implemented in the MHOST code is

based on the subspace iteration documented by BATHE, WILSON (1976). In this

process, a large eigenproblem of structural systems is mapped into a subspace of
finite dimensions and the Jacobi iteration is performed to solve the small eigen-

problem set in the subspaces. This eigenvalue extraction procedure is used to

compute the natural frequency and vibration mode of tmstressed and prestressed

structures and the buckling analysis of prestressed structures undergoing elastic or

inelastic deformation of infinitesimal or finite amplitude.

Note here that in the eigenvalue extraction, the displacement stiffness matrix

is used to represent the response of structural systems. However, in the buckling

and model analyses with prestress, the improvement of stress field generally

improves the quality of solution considerably. The utilization of mixed stress inter-

polation in the eigenvalue analysis can be viewed as a perturbed eigenvalue

problem in which the effect of independent stress approximation is regarded as the

perturbation to the displacement finite element system. It is anticipated that an

algorithm proposed by SIMO (1985) and implemented for the NESSUS probabilistic

finite element code may be usable for eigenvalue extraction of mixed system of

finite element equations.

V
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3. ELEMENT TECHNOLOGY

Introductory Remarks

The MHOST program consists of a library of highly accurate linear quadrilateral and
hexahedral elements. The selective reduced integration and assumed stress

interpolation are used to improve the element responses under bending load. To

take the full advantage of these formulations, a rational local coordinate

transformation derived from the polar decomposition of the Jacobian matrix is

developed and implemented in the code. This highly sophisticated algorithm

makes the response of element insensitive to the isoparametric distortion.

For the sampling and nodal projection of element strain components, the

trapezoidal integration rule is utilized for the maximum accuracy and stability. The
oscillation of strain/stress fields often observed at the element integration points are

filtered out by this procedure. The resulting mixed iterative finite element method

is capable of producing very accurate displacement, strain and stress simultaneously.

The nodally continuous stress assumption used in the beams and shells

improves the accuracy of MHOST solution cosiderably in comparison with the

conventinal displacement strategies. For example, the nodally exact displacement
and moment solution is obtained for a cantilever beam problem modelled by the

MHOST shell element subjected to a point load in the transverse direction at the tip.

This shows the capability of the mixed iterative shell formulation to capture the

linear moment field exactly by using only the linear finite element basis functions.

To avoid numerical instabilities commonly observed for the four node shell

elements such as the numerical locking and hourglass displacement modes, the
stiffness matrix for the shell element uses the selective integration for the

transverse shear terms and a simple and efficient hourglass control scheme

proposed by BELYTSCHKO, TSAY & LIU (1981).

The sophistcated three dimensional element implemented in the MHOST

program exhibits superior accuracy in comparison with the conventional

isoparamatric 8 node brick element derived directly from the displacement method

formulation. The selective shear integration/assumed stress formulation in

conjunction with the local coordinate trasformation based on the isoparametric
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mapping results in a highly accurate displacement field even at the initial

displacement preconditioning phase without iterative improvement. The iterative

process drives the solution further toward the direction of high accuracy for the

given mesh.

To generate a good displacement update for preconditioning purposes, two

major refinements are incorporated in the present computational procedure. These

are the improved version of filtering scheme for the selectively reduced integration

and the modified numerical quadrature for plates and shells to avoid possible

kinematic mode excitation.

Coordinate Transformation and Filtering Algorithms

An element coordinate system is developed in this section which neutralize the

rotation associated with the isoparametric representation of the element. The pro-

cedure is similar to the kinematics of finite deformation processes. It is developed

to handle two- and three-dimensional elements in a unified manner.

The isoparametric transformation is defined by the Jacobian

where x denotes the physical coordinate vector with X being the reference

(isoparametric) coordinate system. The isoparametric transformation is

decomposed to the rotation and stretch by virtue of the polar decomposition

J=RU

where R denotes the rotation tensor with U being the right stretch tensor with

respect to the isoparametric mapping. The rotation tensor is calculated by

R = lU -1

Using this orthogonal tensor, the rotation neutralized coordinate system X is

defined by

X=gx

or, by using the indicial notation,

V

V
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where

The figure depicts the definition of coordinate systems used in this development. In
order to maintain the flexibility in the development of numerical integration
procedures for element arrays, the operation is carried out only at the element
centroid. The coordinate system defined at the element centroid is used for the

definition of vector and tensor components in the element.

The right Cauchy deformation tensor is defined by a product of Jacobian as

c=jTj

or alternatively, in terms of the right stretch tensor

C -- uTu

=

©

""2

?
o

"1

X 2

_1 X 1

a) The Parent Element in the b)

Isoparametric Space

A Typical Element in the Physical
Plane

Figure 3.1 Definition of Coordinate Systems for a Linear Isoparametric Element in
Two Dimensions

_.. In terms of the right Cauchy deformation tensor, the right stretch tensor is expressed
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as
-2

u -_=c-,' =N_;_c_Nc

Hence, the rotation tensor is calculated from the expression

Eigenvalues and eigenvectors of the right Cauchy-Green tensor are calculated by

using the Cayley-Hamilton formula in two dimensions whereas an iterative process

is used for the three dimensional application of this coordinate transformation. The

Cayley-Hamilton formula used in the polar decomposition, is given as

U _. 1 (c+
where

Ic = tracoC,II c = detC,

and

The kl-th component of the linear infinitesimal strain tensor in the local

coordinate system _(kl ) is written in terms of components in the global coordinate

system such that

_(kij _ (k) (1) (k-gi g)_

Summation is not implied the superscripts in the parentheses. Using the strain

components in the global coordinate system, we have the strain component defined

in the local coordinate system by

Hence the ij-th strain component can be represented by the product of coordinate

transformation and the original global strain components by

V

V
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e(kJ ) (k ) (l) (k )g,(1q = gi gj gm )5mn

It is interesting to note that, the full coordinate transfornation system is an identity

tensor

(k) (0 (k) (0
gi gj gm gn =1

Introducing the filtering matrix for the selective integration defined by

G. (k ) (k ) g j(k )tj =gi

The strain component in the local coordinate system can be written in a simpler

manner

e(kt ) = G kG l
iJ irn jn E mn

The volumetric strain in the element coordinate system is defined as

_(v) =_k

= G. kG I 5kl
tm jn Emn

Similarly the deviatoric strain components in the element coordinate system is

written as

_(d) = Ekk

= '
lm jn

In the numerical integration process, at the full integration points we evaluate

= cxE(") + 13¢(a3

whereas at the reduced integration point,

E = (1 = a)e (') + (1- _5)_:(a)

typically with

o¢=I ; [5=0
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This effectively filters the sprious bending stiffness associated with the linear iso-

parametric element formulation based on the conventional displacement formu-
lation.

Defining the original strain component E by

E - BU (3.15)

with B being the usual strain-displacement matrix calculated at the quadrature
points and U the nodal displacement vectors, the energy functional I(U) is
obtained in terms of nodal displacement for linear elasticity as an example by,

I(U) = -_ ;_E(V)® + _E ( ® E (a_dx - F, Udx- • Uds
_.D D Ofl

(3.16)

where ® denotes tensor inner products, _ and _ are the Lamme-Navier coefficients
and F and T are the prescribed body force and surface traction respectively.

In the above energy functional, either the first term or the second term is
under,integrated to realize the necessary effects of the selectively reduced integ-
ration.

In computations, it is often more convenient to construct the strain-displace-
ment matrix selectively, so that the above energy functional can be written as

I(U)" _U DBsdxU- FTu

fl

(3.17)

where F is the collection of prescribed load terms which appeared in equation (2.48).

The new strain-displacement matrix B is the selectively sampled matrix equivalent
to a certain mixed method under the isoparametricdistortion. In the matrix
notation, the filter for the element volumetric strain is written as

E(v_ ., GT IGBU (3.18)

and for the element deviatoric strain

V

V

V
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\ i

E (D) = GT(1 - I)GBU

at each integration point, with 1 and I being matrices

1= 1 1 ;I=Sij = 1

1 1 0

(3.19)

(3.20)

Hence, we have

B s = GTIGB+ GT(1 - I)GB (3.21)

where either the first or the second term is sampled at the reduced integration

points and substituted to the array associated with the full integration points. Such

an operation is trivial only for the linear Lagrangian elements with a single reduced

integration point.

Hourglass Control Algorithm for Plates and Shells

The kinematic model generated by the reduced integration of transverse shear terms

in the 4 noded bilinear plates and shell elements often induce numerical noise in

the displacement preconditioning operation. However, excitation of these modes

often referred to as the hourglass mode does not significantly deteriorate the

convergence of the mixed iterative algorithms. To eliminate these modes filtering

methods have been developed either to constrain the modes by modifying the

stiffness equation (a priori hourglass control) [BELYTSCHKO, FLANAGAN (1982)]

or to filter out the sprious noise after the nodal displacement is obtained (a

posteriori hourglass control) [ODEN (1983)].

Noting that the fully integrated stiffness matrix does not contain the

kinematic modes, we utilize a simple version of a priori hourglass control algo-

rithm originally developed by BELYTSCHKO et.al. (1982). Note also that the fully

integrated equation locks the structure which produces excessive strain energy
associated with the transverse shear te_ for a given displacement field.

Constructing the transverse shear stiffness matrix K by adding

K s = EK(2x2) + I1_ _]e-(2x2)_)..$ (3.22)

where e is the parameter associated with the aspect ratio of the element, the
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kinematic mode can be eliminated without the expense of numerical locking, due to

the insignificant participation of the fully integrated terms.

The formula to calculate the filtering participation of K

centroid of the element such that

is calculated at the

= ¢0 tc / h (3.23)

with t being the thickness of the element at the centroid and h is the mesh size

1

h = _(IXl- x41 + Ix2 - x31) (3.24)

Typically _0 = 0.01 is used for the validation and verification exercises.

No additional computational cost is involved in this hourglass control

algorithm because the element stiffness equations are integrated selectively and K is

readily available without adding a new integration procedure.

V

Assumed Stress Element Formulations

In order to boost the performance of continuum elements, a family of assumed

stress element formulations is added in the mixed iterative solution procedure.

Regular continuum elements often lack the appropriate deformation modes to
model shell-like structures in a satisfactory way. This was observed by AHMAD,

ZIENKIEWICZ (1972) in the development of the 8-node thick shell element. The

problem was circumvented by a selective reduced integration formulation. There
are a class of shell elements incorporating special interpolations for the transverse

shear terms to retain accuracy for the bending behavior of shells, e.g., Heterosis

element of HUGHES, TEZDUYAR (1978) and the 8 and 9-node thick shell elements

proposed by HINTON, HUANG(1986). Four and eight node versions of such

elements are proposed by NAGTEGAAL, NAKZAWA, TATEISHI (1987).

The original library of continuum elements implemented in MHOST

(element types 3, 7, 10 and 11) are based on the selective reduced integration with the
coordinate transformation in order to retain invariance with respect to the

isoparametric trnsformation. In recent paper by PIAN, SUMIHARA (1986), a

hybrid stress element which exhibits excellent bending behavior for distorted

configurations. The element uses five independent stress parameters to define the

element stress field.

The assumed stress element formulation developed in this program is a

family of continuum-type elements with enhanced bending behavior with V
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reasonable accuracy even at a high aspect ratio. The elements were constructed

using an assumed strain formulation. The basic strategy is:(i) the identification of a

set of independent stress modes representing the desired element behavior, (ii) the

construction of a corresponding set of strain modes which results in a proper set of

stress modes. The formulation is the conventional strain-driven form and imple-

mented in the existing MHOST framework for material nonlinear problems. The

strain modes are used to interpolate the element strain field and are projected to the

displacement gradients by a mean square manner. All assumed strain modes are

expressed in terms of a local element cartesian coordinate system obtained by polar

decomposition of the isoparametric mapping at the centroid of the element. The

stretch tensor obtained in the polar decomposition is used for computing scale

factors to make the element computation dimensionless.

The library of assumed strain elements implemented in MHOST includes 4-

node quadrilaterals for plane strain, plane stress and axisymmetric problems, and an

8-node solid element for modeling three- dimensional continua. The current

implementation can be used with either the displacement or the mixed formulation

and supports different integration rules for strain projection and residual recovery.

Additional Remarks

IAn algorithm is adapted in MHOST to allow the nodal definition of pressure

loading on 2 and 3D continuum meshes. The algorithm is based on a nodal

assembly of tributary areas at each node in such a way that a unique outward

boundary normal vector is defined at each surface node. These normals define the

effective surface orientation and the direction of the applied pressure at the node.

For small deformation problems, this operation is carried out only once,

during the first element assembly loop, and the resulting boundary normals are

used to compute consistent pressure loads throughout the analysis.
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V

4. ITERATIVE SOLUTION ALGORITHMS

Introductory Remarks

In this section, iterative solution algorithms used for the solution of mixed finite

element equations are discussed in deatail. The fundamental solution strategy is

presented in the following flow chart. This process is simlar to the modifed Newton

approach for the nomlinear finite element calculations. One can find simlarity of

the process to the Uzawa's algorithm for constrained minimization problems.

Step 1: Initialization

rn=f and un=O

Step 2: Nodal displacement update

un+l =u n + K-1 r n

Step 3: Strain projection to the nodes

c n+l =C -l E u n+l

Step 4: Stress recovery at the nodes

(yn+l =C-TG _n+l

Step 5: Form the residual

rn+ 1 = f _ E T an+ 1

If ii rn+ 1 i > toler_ce go to Step 2.

where notation defined in the first section is used to identify vectors and matrices

appeared in the mathematical expressions.

The displacement stiffness matrix K is used algorithmically to (a) obtain the

V
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k..../
initial trial solution used to start the iterative procedure for the mixed problem, and

(b) help iterate the intermediate results towards the "exact" solution for the mixed

system of equations.

The Davidon Rank-one Secant Newton Update Procedure

The role of the displacement stiffness K in the solution of the mixed problem is
essentially algorithmic. Therefore, we can use a simple update procedure to try to
improve our matrix between iterations. One of the simpler procedures of this type
is known as the Davidon rank-one secant Newton update. This procedure is equi-

valent to replacing the K matrix in Step 2 of the basic algorithm by an iteratively

updated matrix of the form

Knl+ = Kn I + ( du n _ Kn 1 yn ) ® ( du n _ g_ 1 yn )
1 ( dun _ Knl yn ). yn

where

yn = r n _ rn-I

i.e., the difference between the residual vectors obtained for two consecutive
iterations. Of course, this is not how we do it in the program! As we shall see,

there is a far more efficient way of programming this method.

The best way of programming this algorithm will involve only a small
number of additional vector operations when the displacement updates are

computed. Using this approach, we will not even need to explicitly store the update
vectors employed by the algorithm! An efficient implementation of the Davidon

algorithm can be summarized as follows:

Step 1: Initialization

rn=f and du n-1 =du n-1 *=0

Step 2a: Solve for the trial displacement

du n = K-1 r n

Step 2b: Compute the following terms

yn = r n _ rn-I

S.Nakazawa March, 1991



MHOST Theoretical Manual 50

( du n-1 * + du n - dun-1 ) • rn-1
C"

( dun-1 * + du n_ dun-1 ). yn

b = --c

a=l-c

Step 2c: Update the nodal displacements

du n * = a du n + b du n-1 * + c du n-1

V

un+l =u n + du n*

Step 3: Strain projection to the nodes

En+l = C -1 E u n+ 1

Step 4: Stress recovery at the nodes

o.n+l = C-TG _n+l

Step 5: Form the residual

rn+ 1 = f _ E T on+ 1

If _ r n+ 1 ii > tolerance go to Step 2.

V

As we can see, the only difference from the basic algorithm is in Step 2a-c. Please
notice that the first pass with the Davidon algorithm is essentially the same as in

our basic algorithm. In a way, the update procedure is "turned on" by the second

pass through the iteration procedure. This algorithm can also be used in
conjunction with line searches. The procedure for combining the two algorithms is

very straightforward, and we will not need to complicate our discussion with those
details.

Solution Algorithms for Eigenvalue Problems
7:

Eigenvalue pr0ble-ms arise in a n_r of-_ferent sit_iatlons__Let's st_-t W_th the
very familiar dynamic eigenvalue problem for (small amplitude) undamped
vibration of a linear elastic structure. This will give rise to a set of matrix equations
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of the form

(K-_M)_=O

wher M and K are the consistent mass and displacement stiffness matrices for the

problem. When the stiffening effects due to the initial stress field and/or the
centrifugal mass effects observed in rotating machinery are included, the eigenvalue

problem will become

((K+ Kg- MLo)-_,M)_ =0

where

are the geometric stiffness and the centrifugal mass matrix.

The first one of these matrices is also used to set up the buckling eigenvalue

problem for a linear elastic structure. If the problem is linearized about the origin
(the usual case), the matrix equations will be

(K-_, Ks)_ =0

A related eigenvalue problem comes up in nonlinear analysis when we are trying to
detect the presence of a nearby bifurcation. This problem can be expressed by a

matrix equation of the form

where

(Kn-h K_)_=O

B T o n B dO + other possible terms
Kn= ffBTDnBdf_ + ff_
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BT On B dfi

are some tangent material and geometric stiffness matrices, both linearized at the

end of the last load increment. The presence of a bifurcation would be indicated by

the vanishing of one or more eigenvalues.

Finally, we must complete our list with the deformation modes problem which is
an eigenvalue problem of the form

(K-_.l)(b =O

where I is an identity matrix with the appropriate rank. This problem may be used
to assess the quality of the finite element approximation for certain classes of

problems. It hardly ever is used in actual engineering practice.

The subspace iteration procedure is employed in the MHOST finite element
program to solve the generalized eigenvalue problem. We will present this
algorithm in terms of the dynamic eigenvalue problem although, in reality, the

subspace iteration algorithm can be used to solve any of the eigenvalue problems
discussed in the preceding pages. The basic implementation of the subspace
iteration procedure will involve the following steps:

Step 1: Select the initial trial vectors

¢7.]

Step 2: Solve for the subspace vectors

R n = K -1 M (l)n

Step 3: Construct the reduced eigenproblem

_n = R n T K R n

V

_n = R n T M R n

Step 4: Solve the reduced eigenproblem

( R'- ) =o
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for i = 1, 2 ... m using the Jacobi iteration method.

Step 5: Obtain the improved eigenvectors

_n=R n[_q_... _nn]

If not converged go to Step 2
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V

APPENDIX COMPUTER CODE ARCHITECUTRE

Program Organization

The architecture of the MHOST code is schematically shown in Figure A.1. The

execution supervisor routine (SUBROUTINE HOST) controls multiple analysis

modules in a consistent manner. In Version 4 of the MHOST code, a pair of

subroutines are added to check the consistency of the Parameter Data and to generate

internal flags for the selection of analysis modules. The intention is to avoid

possible occurrence of users to combine the features of the program package not the

way the developers designed.

The analysis modules represents the control structure of incremental

iterative algorithms implemented in the MHOST code without going into detail.

The source program with comments is designed to serve as the schematic flow chart

of the computational process.

The schematic flow of the element and nodal data manipulation is coded in

the element assembly submodules which are entered from analysis modules. The

element assembly submodules performs operations independent of element types

and constitutive models. The assumptions introduced in the mechanics aspects of

the formulations are explicitly coded at this level. These submodules call the
librarian routines for elements and constitutive models.

The element librarian subprogram (SUBROUTINE DERIV) generates quantities

unique to the element used in an analysis. The MHOST code uses the standard
finite element matrix notation as in ZIENKIEWICZ(1977), ZIENKIEWICZ &

TAYLOR (1990). The element specific information returned from the librarian sub-

program is the strain-displacement array referred to as B matrix in the previous
subsections.

The constitutive equation librarian subprogram (SUBROUTINE STRESS and

BMSTRS) is designed to incorporate the nodal storage of stress and strain values.

The STRESS subroutine sets up the loop over the points at which constitutive

equations are evaluated. The current implementation is a nested double loop with

outer loop being over the node and inner loop over the integration layer through

the thickness. Note that the conventional displacement method can be recovered by V
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restructuring this loop in conjunction with a few minor modification in the core
allocation for stresses and strains.

Execution Supervisor Level 1

Analyds Drlve¢
I Level 2

Element Ubrary

Constitutive Equation Ubrary

Level 3

Level 3

Work
Group
Subpro
grams

Level 4

Algebraic Operation Utilities

I

Figure I Organization of MHOST Program

The librarian subprogram calls the constitutive equation package (SUB-

ROUTINE NODSTR) from which individual subprograms for initial strains, stress
recovery and material tangent are called. The librarian subprograms also controls
the pre-integration of stresses, strains and material tangent over thickness for the
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shell element.

Note that the evaluation of the constitutive equation is one of the most costly

operation in the nonlinear finite element computations. An attempt is made to

minimize the execution of this process during the incremental iterative analysis, in

particular the recovery of the residual vector. At the beginning of each increment,

this process may be executed to evaluate the material tangent and contribution of

initial strain terms which are often necessary for proper displacement pre-

conditioning.

Except for a small amount of information related to the convergence of

iterative solution, all the report generation is performed at the end of increment.

Optionally, post-processing and restart files are written at the end of user-specified

increments. Generic reporting subprograms are called from analysis modules inside

of the loop over the increments.

A brief description of major subprograms are given below:

Execution Supervisor:

MAIN PROGRAM - declares the work space in blank common as an integer

array. Also defines system parameters which are machine independent.

Then pass the control to actual execution supervisor SUBROLTIINE HOST.

SUBROUTINE HOST - controls the sequence of execution of the analysis

modules. First, this routine executes the control parameter data reader

SUBROUTINE DATIN1 and check the consistency by entering SUBROUTINE

LETCMD and RUNCMD. The current structure of code allows certain

combination of two analysis modules to be executed sequentially. Analysis

modules called from the execution supervisor are:

SUBROUTINE STATIC for quasi-static incremental iterative solution.

SUBROUTINE DYNAMT for the transient tome integration of dynamic equili-

brium equation in an incremental-iterative manner.

SUBROUTINE MODAL for the eigenvalue extraction for vibration mode

analysis. This subsystem may be executed after the quasi-static analysis for the

modal analysis of prestressed structures.

SUBROUTINE BUCKLE for the eigenvalue extraction for buckling load

calculation. This subsystem is executable only after the quasi-static analysis.

SUBROUTINE FRONTS for the quasi-static incremental iterative solution by

V

V
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the out-of-core frontal solution. Note that certain options are not available in
this subsystem.

SUBROUTINE SUPER for the linear dynamic response calculation by the
method of mode superposition.

Input Data Reader :

There are three major subprograms:

SUBROUTINE DATIN] - Reads and interprets the parameter data input called
by the execution supervisor. All the default values for control variables are
set in this routine.

SUBROUTINE BULKIN - Reads and interprets the finite element model
definition data and prints the mesh and loading data for the initial increment
(number 0). The bulk data reader is entered before the execution of analysis

modules. This subroutine enters following lower level routines:

SUBROUTINE INITI1 for the memory allocation of integer workspace in the
blank common to store nodal and element data.

SUBROUTINE DATIN2 for the model data input.

SUBROUTINE DATOU1 for reporting the model definition data.

SUBROUTINE CHKELM for the detection of clockwise element connec-

tivity definition which results in the negative Jacobian matrix. This

routine automatically corrects the connectivity table to counterclockwise
direction.

SUBROUTINE SUBDIV for the memory allocation for the subelement mesh
data and automatic mesh generation for the subelements.

SUBROUTINE INCRIN - Reads and interprets the loading and constraint data

for each increment. This routine is invoked by individual analysis modules

from the inside of loop over the increments.

SUBROUTINE DATIN3, a small subset of the bulk data reader SUBROUTINE

DATIN1 is used for actual operations including the initialization of arrays
at the beginning of increment.

Algebraic Operation Subsystem :
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There are three groups of four routines ior the profile solver, frontal solver and
eigenvalue extraction. The profile solution package consists of"

SUBROUTINE COMPRO - Sets up the integer array for the profile of global
stiffness equations to be stored in a profile form.

SUBROUTINE ASSEM5 - Assembles the element stiffness equations into the

global equation system stored in a profile form.

SUBROUTINE SOLUT1 - Controls the iterative solution processes including
the vector update required for the quasi- and secant-Newton iterations.

SUBROUTINE DECOMP - Factorizes the global stiffness equations stored in a
profile form.

SUBROUTINE SOLVER - Performs the back substitution and generates the

update vector for the incremental displacement.

The frontal solution package consists of:

SUBROUTINE FRONTW - Estimates the front matrix size to be accommodated

in the core memory.

SUBROUTINE INTFR - Allocates memory for the work space required for the
frontal solution.

SUBROUTINE PRFRNT - Sets up the elimination table for the frontal solution.

SUBROUTINE FRONTF - Assembles and factorizes the global stiffness equation

simultaneously.

SUBROUTINE FRONTB -Performs the back substitution and generates the

updates for displacement v_or.

SUBROUTINE FRONTR - Controls the iterative solution processes including

the vector update required for the quasi- and secant-Newton iterations. Calls
SUBROUTINE FRONTB for the incremental displacement update vector.

SUBROUTINE VDSKIO - Controls the data stream stored in-core buffer area

and the actual out-of-core storage devices.

The eigenvalue analysis package consists of:

SUBROUTINE EIGENV - Controls the execution of eigenvalue extraction

V

v
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subsystem.

SUBROUTINE INIMOP - Initializes the array for eigenvectors.

SUBROUTINE SUBSPC - Performs the subspace iteration and generates a

specified number of eigenvalues and eigenvectors.

SUBROUTINE JACOBI - Solves the eigenvalue problem in the subspace by the

Jacobi iteration.

There are a number of subprograms used commonly by Algebraic Operation Sub-

system:

SUBROUTINE STRUCT - Controls the memory allocation for the global

algebraic manipulations at the beginning of every analysis.

SUBROUTINE INITI2 - Allocates memory required for the storage of global

stiffness matrix and other vectors required in the linear algebraic

manipulation of finite element equations.

SUBROUTINE LINESR - Calculates the search distance when the line search

option is turned on.

Element Assembly Submodules :

These are subprograms constructing vectors and matrices appearing in the algo-

rithmic description of mixed iterative process discussed in the previous subsections.

SUBROUTINE ASSEM1 - Assembles the displacement stiffness matrix for the

preconditioning purposes. All the options for kinematic and constitutive

assumptions are treated on this module.

SUBROUTINE ASSEM2 - Assembles the coefficient matrix for the transient

time integration by the Newmark family of algorithm. This routine is
evolved from SUBROUINE ASSEM1 and handles all the kinematic and

constitutive options.

SUBROUTINE ASSEM3 - Assembles the coefficient matrix for the quasi-static

analysis using the frontal solution subsystem. Large displacement, stress

stiffening and centrifugal terms are not available in this package.

SUBROUTINE ASSEM4 - Calculates the nodal strain and recovers the residual

vector in a mixed form. The subelement solution module is entered from

this subprogram.
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Element Loop Structure and Library Routines :

In the element assembly submodules, element arrays are generated in the loops
over elements. The protocol to access to the element library is designed and
implemented which involves a sequence of subroutine calls:

SUBROUTINE ELVULV - Sets up the current element parameters from the
element library table.(See Table A1 for variable definition and its values)

SUBROUTINE CNODEL - Pulls out quantifies for the current element from
the global nodal array and restores them in the element workspace.
Coordinate transformations necessary for beam and shell elements are
performed in this subprogram.

SUBROUTINE DERIV - Sets up the displacement-strain matrix for the current
element by calling the element library subroutines. Those are:

SUBROUTINE BPSTRS for plane stress elements, types 3 and 101.

SUBROUTINE BPSTRN for plane strain elements, types 11 and 102.

SUBROUTINE BSOLID for three-dimensional solid element, type 7.

SUBROUTINE BSHELL for three-dimensional shell element, type 75.

SUBROUTINE BAXSYM for axisymmetric solid-of-revolution elements,
types 10 and 103.

SUBROUTINE BTBEAM for linear Timoshenko beam element, type 98.

SUBROUTINE BASPST for the assumed stress plane stress element, type
151.

SUBROUTINE BASPSN for the assumed stress plane strain element, type
152.

SUBROUTINE BASSOL for the assumed stress three-dimensional solid

element, type 154.

SUBROUTINE UDERIV - A slot for user coded element B matrix routine.

The following subprograms are used to calculate terms appearing in the finite

element equations:

V

V
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SUBROUTINE LMPMAS

projection.

Calculates nodals weight factor for the strain

SUBROUTINE STIFF - Performs matrix triple products to assemble the element
stiffness matrix and the element load vector associated with the initial strain

terms.

SUBROUTINE STRAIN - Calculates element strain at specified sampling points

and projects to nodes.

SUBROUTINE CNSMAS - Assembles the consistent mass matrix for the modal

and transient analysis.

SUBROUTINE INITST - Generates initial stress terms for the quasi-static,

buckling and modal analysis of prestressed structures.

SUBROUTINE CENMAS - Evaluates the centrifugal mass terms for rotating

structures at speed.

SUBROUTINE RESID - Calculates the element residual vector for the global

element.

SUBROUTINE SUBFEM - Performs the subelement solution and calculates the

element residual vector for the subelement mesh.

SUBROUTINE RELDFG - Calculates relative deformation gradient at the

element sampling point and projects to node.

SUBROUTINE RESDYN - Calculates the contribution of mass and damping

terms in the element residual vector when the transient dynamics option is
used.

Material Library :

A system of subroutines is included in the MHOST code which covers a wide range

of material models and initial strain assumptions:

SUBROUTINE SIMPLE - Integrates the stress over the increment assuming the

elastic-plastic response of the material is represented by total secant modulus

of elasticity. Also generates the material modulus matrix.

SUBROUTINE PLASTS - Integrates the stress over the increment and calculates

the plastic strain by using the radial return algorithm.
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SUBROUTINE PLASTD - Calculates the consistent elastic-plastic modulus if the

incremental equivalent plastic strain is positive.

SUBROUTINE WALKEQ Integrates the Walker unified creep plasticity

constitutive equation and also generates a material modulus based on the

temperature dependent elasticity assumption.

SUBROUTINE LELAST - Calculates the stress for the constant material modulus

given as data.

SUBROUTINE THRSTN - Calculates the thermal strain.

SUBROUTINE CRPSTN - Calculates the creep strain.

V

V
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